Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-520569

RESUMO

The continued evolution of the SARS-CoV-2 Omicron variant has led to the emergence of numerous sublineages with different patterns of evasion from neutralizing antibodies. We investigated neutralizing activity in immune sera from individuals vaccinated with SARS-CoV-2 wild-type spike (S) glycoprotein-based COVID-19 mRNA vaccines after subsequent breakthrough infection with Omicron BA.1, BA.2, or BA.4/BA.5 to study antibody responses against sublineages of high relevance. We report that exposure of vaccinated individuals to infections with Omicron sublineages, and especially with BA.4/BA.5, results in a boost of Omicron BA.4.6, BF.7, BQ.1.1, and BA.2.75 neutralization, but does not efficiently boost neutralization of sublineages BA.2.75.2 and XBB. Accordingly, we found in in silico analyses that with occurrence of the Omicron lineage a large portion of neutralizing B-cell epitopes were lost, and that in Omicron BA.2.75.2 and XBB less than 12% of the wild-type strain epitopes are conserved. In contrast, HLA class I and class II presented T-cell epitopes in the S glycoprotein were highly conserved across the entire evolution of SARS-CoV-2 including Alpha, Beta, and Delta and Omicron sublineages, suggesting that CD8+ and CD4+ T-cell recognition of Omicron BQ.1.1, BA.2.75.2, and XBB may be largely intact. Our study suggests that while some Omicron sublineages effectively evade B-cell immunity by altering neutralizing antibody epitopes, S protein-specific T-cell immunity, due to the very nature of the polymorphic cell-mediated immune, response is likely to remain unimpacted and may continue to contribute to prevention or limitation of severe COVID-19 manifestation.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21268103

RESUMO

A new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage, B.1.1.529, was recently detected in Botswana and South Africa and is now circulating globally. Just two days after it was first reported to the World Health Organization (WHO), this strain was classified as a variant of concern (VOC) and named Omicron. Omicron has an unusually large number of mutations, including up to 39 amino acid modifications in the spike (S) protein, raising concerns that its recognition by neutralizing antibodies from convalescent and vaccinated individuals may be severely compromised. In this study, we tested pseudoviruses carrying the SARS-CoV-2 spike glycoproteins of either the Wuhan reference strain, the Beta, the Delta or the Omicron variants of concern with sera of 51 participants that received two doses or a third dose ([≥]6 months after dose 2) of the mRNA-based COVID-19 vaccine BNT162b2. Immune sera from individuals who received two doses of BNT162b2 had more than 22-fold reduced neutralizing titers against the Omicron as compared to the Wuhan pseudovirus. One month after a third dose of BNT162b2, the neutralization titer against Omicron was increased 23-fold compared to two doses and antibody titers were similar to those observed against the Wuhan pseudovirus after two doses of BNT162b2. These data suggest that a third dose of BNT162b2 may protect against Omicron-mediated COVID-19, but further analyses of longer-term antibody persistence and real-world effectiveness data are needed.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-474095

RESUMO

The ongoing COVID-19 pandemic is leading to the discovery of hundreds of novel SARS-CoV-2 variants on a daily basis. While most variants do not impact the course of the pandemic, some variants pose a significantly increased risk when the acquired mutations allow better evasion of antibody neutralisation in previously infected or vaccinated subjects or increased transmissibility. Early detection of such high risk variants (HRVs) is paramount for the proper management of the pandemic. However, experimental assays to determine immune evasion and transmissibility characteristics of new variants are resource-intensive and time-consuming, potentially leading to delays in appropriate responses by decision makers. Here we present a novel in silico approach combining spike (S) protein structure modelling and large protein transformer language models on S protein sequences to accurately rank SARS-CoV-2 variants for immune escape and fitness potential. These metrics can be combined into an automated Early Warning System (EWS) capable of evaluating new variants in minutes and risk-monitoring variant lineages in near real-time. The system accurately pinpoints the putatively dangerous variants by selecting on average less than 0.3% of the novel variants each week. With only the S protein nucleotide sequence as input, the EWS detects HRVs earlier and with better precision than baseline metrics such as the growth metric (which requires real-world observations) or random sampling. Notably, Omicron BA.1 was flagged by the EWS on the day its sequence was made available. Additionally, our immune escape and fitness metrics were experimentally validated using in vitro pseudovirus-based virus neutralisation test (pVNT) assays and binding assays. The EWS flagged as potentially dangerous all 16 variants (Alpha-Omicron BA.1/2/4/5) designated by the World Health Organisation (WHO) with an average lead time of more than one and a half months ahead of them being designated as such. One-Sentence SummaryA COVID-19 Early Warning System combining structural modelling with machine learning to detect and monitor high risk SARS-CoV-2 variants, identifying all 16 WHO designated variants on average more than one and a half months in advance by selecting on average less than 0.3% of the weekly novel variants.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20245175

RESUMO

BNT162b2, a lipid nanoparticle (LNP) formulated nucleoside-modified messenger RNA (mRNA) encoding the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S) stabilized in the prefusion conformation, has demonstrated 95% efficacy to prevent coronavirus disease 2019 (COVID-19). Recently, we reported preliminary BNT162b2 safety and antibody response data from an ongoing placebo-controlled, observer-blinded phase 1/2 vaccine trial1. We present here antibody and T cell responses from a second, non-randomized open-label phase 1/2 trial in healthy adults, 19-55 years of age, after BNT162b2 prime/boost vaccination at 1 to 30 {micro}g dose levels. BNT162b2 elicited strong antibody responses, with S-binding IgG concentrations above those in a COVID-19 human convalescent sample (HCS) panel. Day 29 (7 days post-boost) SARS-CoV-2 serum 50% neutralising geometric mean titers were 0.3-fold (1 {micro}g) to 3.3-fold (30 {micro}g) those of the HCS panel. The BNT162b2-elicited sera neutralised pseudoviruses with diverse SARS-CoV-2 S variants. Concurrently, in most participants, S-specific CD8+ and T helper type 1 (TH1) CD4+ T cells had expanded, with a high fraction producing interferon-{gamma} (IFN{gamma}). Using peptide MHC multimers, the epitopes recognised by several BNT162b2-induced CD8+ T cells when presented on frequent MHC alleles were identified. CD8+ T cells were shown to be of the early-differentiated effector-memory phenotype, with single specificities reaching 0.01-3% of circulating CD8+ T cells. In summary, vaccination with BNT162b2 at well tolerated doses elicits a combined adaptive humoral and cellular immune response, which together may contribute to protection against COVID-19.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-027805

RESUMO

BackgroundThe ongoing COVID-19 pandemic has created an urgency to identify novel vaccine targets for protective immunity against SARS-CoV-2. Consistent with observations for SARS-CoV, a closely related coronavirus responsible for the 2003 SARS outbreak, early reports identify a protective role for both humoral and cell-mediated immunity for SARS CoV-2. MethodsIn this study, we leveraged HLA-I and HLA-II T cell epitope prediction tools from RECON(R) (Real-time Epitope Computation for ONcology), our bioinformatic pipeline that was developed using proteomic profiling of individual HLA-I and HLA-II alleles to predict rules for peptide binding to a diverse set of such alleles. We applied these binding predictors to viral genomes from the Coronaviridae family, and specifically to identify SARS-CoV-2 T cell epitopes. ResultsTo test the suitability of these tools to identify viral T cell epitopes, we first validated HLA-I and HLA-II predictions on Coronaviridae family epitopes deposited in the Virus Pathogen Database and Analysis Resource (ViPR) database. We then use our HLA-I and HLA-II predictors to identify 11,776 HLA-I and 7,991 HLA-II candidate binding peptides across all 12 open reading frames (ORFs) of SARS-CoV-2. This extensive list of identified candidate peptides is driven by the length of the ORFs and the significant number of HLA-I and HLA-II alleles that we are able to predict (74 and 83, respectively), providing over 99% coverage for the US, European and Asian populations, for both HLA-I and HLA-II. From our SARS-CoV-2 predicted peptide-HLA-I allele pairs, 368 pairs identically matched previously reported pairs in the ViPR database, originating from other forms of coronaviruses. 320 of these pairs (89.1%) had a positive MHC-binding assay result. This analysis reinforces the validity our predictions. ConclusionsUsing this bioinformatic platform, we identify multiple putative epitopes for CD4+ and CD8+ T cells whose HLA binding properties cover nearly the entire population and thus may be effective when included in prophylactic vaccines against SARS-CoV-2 to induce broad cellular immunity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...